Principles and Implementation of Reverse Proxy and Load Balancing
Problem Description
Reverse proxy and load balancing are core components in modern backend architectures. A reverse proxy acts as a gateway for servers, receiving client requests and forwarding them to backend services; load balancing is responsible for distributing traffic reasonably across multiple server instances. Understanding their working principles is crucial for designing highly available systems.
Core Principles
- Reverse Proxy: Sits between the client and backend servers, hiding real server information and providing a unified entry point.
- Load Balancing: Distributes requests to multiple servers using specific algorithms to improve system throughput and reliability.
Implementation Details
Step 1: Basic Reverse Proxy Implementation
# Simple reverse proxy example
import http.server
import socketserver
import requests
class ReverseProxyHandler(http.server.BaseHTTPRequestHandler):
backend_servers = ['http://localhost:8001', 'http://localhost:8002']
def do_GET(self):
# Select backend server (simple round-robin)
backend = self.backend_servers.pop(0)
self.backend_servers.append(backend)
# Forward request
resp = requests.get(f"{backend}{self.path}")
# Return response to client
self.send_response(resp.status_code)
for key, value in resp.headers.items():
self.send_header(key, value)
self.end_headers()
self.wfile.write(resp.content)
Step 2: Evolution of Load Balancing Algorithms
- Round Robin:
class RoundRobinBalancer:
def __init__(self, servers):
self.servers = servers
self.index = 0
def get_server(self):
server = self.servers[self.index]
self.index = (self.index + 1) % len(self.servers)
return server
- Weighted Round Robin:
class WeightedRoundRobinBalancer:
def __init__(self, server_weights):
self.servers = []
for server, weight in server_weights.items():
self.servers.extend([server] * weight)
self.index = 0
def get_server(self):
server = self.servers[self.index]
self.index = (self.index + 1) % len(self.servers)
return server
- Least Connections:
class LeastConnectionsBalancer:
def __init__(self, servers):
self.server_connections = {server: 0 for server in servers}
def get_server(self):
return min(self.server_connections.items(), key=lambda x: x[1])[0]
def release_connection(self, server):
if server in self.server_connections:
self.server_connections[server] -= 1
Step 3: Health Check Mechanism
import threading
import time
class HealthChecker:
def __init__(self, servers, check_interval=30):
self.servers = servers
self.healthy_servers = set(servers)
self.check_interval = check_interval
def check_server(self, server):
try:
resp = requests.get(f"{server}/health", timeout=5)
return resp.status_code == 200
except:
return False
def start_checking(self):
def check_loop():
while True:
for server in self.servers:
is_healthy = self.check_server(server)
if is_healthy and server not in self.healthy_servers:
self.healthy_servers.add(server)
elif not is_healthy and server in self.healthy_servers:
self.healthy_servers.remove(server)
time.sleep(self.check_interval)
thread = threading.Thread(target=check_loop)
thread.daemon = True
thread.start()
Step 4: Session Affinity (Sticky Sessions)
class SessionAwareBalancer:
def __init__(self, servers):
self.servers = servers
self.session_map = {} # session_id -> server
def get_server(self, session_id=None):
if session_id and session_id in self.session_map:
return self.session_map[session_id]
server = self.servers[len(self.session_map) % len(self.servers)]
if session_id:
self.session_map[session_id] = server
return server
Step 5: Complete Implementation Example
class AdvancedLoadBalancer:
def __init__(self, servers):
self.servers = servers
self.balancer = LeastConnectionsBalancer(servers)
self.health_checker = HealthChecker(servers)
self.session_balancer = SessionAwareBalancer(servers)
self.health_checker.start_checking()
def handle_request(self, request):
# Check session stickiness
session_id = request.cookies.get('session_id')
if session_id:
server = self.session_balancer.get_server(session_id)
else:
server = self.balancer.get_server()
# Forward request
self.balancer.server_connections[server] += 1
try:
return self.forward_request(server, request)
finally:
self.balancer.release_connection(server)
Key Technical Points
- Connection Pool Management: Reuse backend connections to reduce overhead.
- Timeout Control: Set connection and read timeouts to avoid blocking.
- Failover: Automatically detect failed requests and retry with other servers.
- Dynamic Configuration: Support adding/removing backend servers at runtime.
Practical Application Scenarios
- Nginx: Event-driven reverse proxy implementation.
- HAProxy: Professional TCP/HTTP load balancer.
- Cloud Services: Managed services like AWS ALB, GCP Load Balancer, etc.
This architecture significantly improves system availability and performance by distributing request pressure and enhancing fault tolerance.